An immersed boundary lattice Boltzmann approach for microscopic blood flows
نویسندگان
چکیده
In this paper, we develop an immersed boundary lattice Boltzmann approach to simulate deformable capsules in flows. The lattice Boltzmann method is utilized to solve the incompressible flow field over a regular Eulerian grid, while the immersed boundary method is employed to incorporate the fluid–membrane interaction with a Lagrangian representation of the capsule membrane. This algorithm was validated for the Laplace relationship, the dispersion relationship for interfacial waves and the drag coefficient for cylinders; excellent agreement with theoretical results was observed. Furthermore, simulations of single and multiple red blood cells in shear and channel flows were performed. Several characteristic hemodynamic and hemorheological features were successfully reproduced, including the tank-treading motions, cell migration from the vessel wall, slipper-shaped cell deformation, cell-free layers, blunt velocity profiles and the Fahraeus effect. These simulations therefore demonstrate the potential usefulness of this computational model for microscopic biofluidic systems. However, extension of this algorithm to three-dimensional situations is necessary for more realistic simulations.
منابع مشابه
Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملModelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method
In the present study, the combination of lattice Boltzmann and immersed boundary methods is used to simulate the motion and deformation of a flexible body. Deformation of the body is studied in microchannel with stenosis and the effect of the flexibility changes on its deformation is investigated. The obtained results in the present manuscript show that by increasing the elasticity modulus, the...
متن کاملEffects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
Concentrated erythrocyte (i.e., red blood cell) suspensions flowing in microchannels have been simulated with an immersed-boundary lattice Boltzmann algorithm, to examine the cell layer development process and the effects of cell deformability and aggregation on hemodynamic and hemorheological behaviors. The cells are modeled as two-dimensional deformable biconcave capsules and experimentally m...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملNumerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کامل